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Abstract
In this paper, we study the internal exact controllability for a second order linear evo-
lution equation defined in a two-component domain. On the interface, we prescribe a
jump of the solution proportional to the conormal derivatives, meanwhile a homoge-
neous Dirichlet condition is imposed on the exterior boundary. Due to the geometry of
the domain, we apply controls through two regions which are neighborhoods of a part
of the external boundary and of thewhole interface, respectively.Our approach to inter-
nal exact controllability consists in proving an observability inequality by using the
Lagrange multipliers method. Eventually, we apply the Hilbert Uniqueness Method,
introduced by Lions, which leads to the construction of the exact control through the
solution of an adjoint problem. Finally, we find a lower bound for the control time
depending not only on the geometry of our domain and on the matrix of coefficients
of our problem but also on the coefficient of proportionality of the jump with respect
to the conormal derivatives.
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1 Introduction

In this paper, we study the internal exact controllability of an imperfect transmission
hyperbolic problem.More specifically, we consider a bounded domain� inRn , n ≥ 2,
consisting of two sets �1 and �2, where �2 is compactly contained in � and �1 =
� \ �2. Thus our domain has an external boundary ∂� and an interface boundary �

(see Fig. 1).
The hyperbolic problem is defined in the set �, with appropriate interface and

boundary conditions on� and on ∂�. Namely, on the interface separating the two com-
ponents, we prescribe a jump of the solution proportional to the conormal derivatives,
meanwhile a homogeneous Dirichlet condition is imposed on the exterior boundary.
From the physical point of view, this problem describes the wave propagation in a
composite made up of two materials with different systems in each component con-
nected through the interface. The jump on � is the mathematical interpretation of
imperfect interface characterized by the discontinuity of the displacement (see [1, 7,
17, 22, 33, 36, 39, 46, 47, 50, 54, 60, 61] and references therein).

The issue of exact controllability consists in acting on the trajectories of an evolution
system by means of a control either through the system internally (distributed control)
or through the boundary (boundary control) and asking if, given a time interval [0, T ],
is it possible to find a control (or set of controls) leading the system to a desired
state at time T , for all initial data. In a suitable functional setting, the problem of
exact controllability reduces to that of observability. Roughly speaking, observability
consists in deriving an estimate for the energy of an uncontrolled system, at time
t = 0, in terms of partial measurements of its solution done on the control region.
This estimate easily implies an upper bound for the norm of the initial data of the
uncontrolled problem.

The observability inequality, far from being obvious, forces the control set to satisfy
suitable geometric conditions. Indeed, in [6], through the microlocal approach, the
authors proved that when considering a regular domain, the observability inequality
holds if and only if every ray of geometric optics, propagating into the domain and
reflecting on its boundary, enters the control region in time less than the control time
T .

In this paper, we do not require any regularity on ∂� and we make use of Lagrange
multipliers method to prove the above mentioned observability inequality. In general,
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when applying this technique, the assumptions on the geometry of the control region
are very restrictive. They require the control set to be a neighborhood of parts of the
boundary having specific structures. In our case, due to the geometry of the domain,
we need to introduce a further control set which is a neighborhood of the interface �.
More precisely, we apply controls through two regions ω1 ⊂ �1 and ω2 ⊂ �2 which
are neighborhoods of a part of ∂� and of the whole interface �, respectively. In fact,
ω1 (see Fig. 2 for control regions ω1 and ω2) may also be a full neighborhood, for
example in the case of a circle. Other novelties in our framework are the jump of the
solution on the interface � and the resulting presence of a non-constant coefficients
matrix. Due to the imperfect interface, when proving observability inequality, some
difficulties arise in estimating specific surface integrals. Moreover, as usual in the
hyperbolic framework, due to the finite speed of propagation of waves, the control
time T in our observability inequality has to be large enough. Indeed, the control
acting on ω1 and ω2 cannot transfer the information immediately to the whole domain
�. However, unlike classical cases, we find a lower bound for the control time T
depending not only on the geometry of our domain and on the matrix of coefficients
of our problem but also on the coefficient of proportionality of the jump with respect
to the conormal derivatives. The exact details are given in Sect. 3.

Once obtained the observability inequality, in order to find the exact control, we use
a constructive method, introduced by Lions in [42, 43], known as Hilbert Uniqueness
Method (HUM for short). The main feature is to build a control through the solution of
a hyperbolic problem associated to suitable initial conditions. These initial conditions
are obtained by calculating at zero time the solution of a backward problem by means
of a functional, which turns out to be an isomorphism, thanks to the observability
estimate (see Sect. 4). Let us recall that the control obtained by HUM is also an energy
minimizing control.

Thepaper is organized as follows. InSect. 2,we introduce the settingof the evolution
problem, recall the definitions and some properties of the appropriate functional spaces
required for the solutions of interface problems under consideration. For more details,
we refer the reader to [22, 50] where the elliptic case is considered. Since the initial
data of our problem are in aweak space, the related solution cannot be defined using the
standardweak formulation. Thus, as usual when dealingwith controllability problems,
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we need to apply the so called transposition method (see [45,Chap. 3, Sect. 9]). We
also give the definition of exact controllability.

Section 3 is the core of the paper which is devoted to the proof of the observability
inequality (see Lemma 3.9). To this aim, we adapt to our context some arguments
introduced in [43] and [44]. By means of the Lagrange multipliers method, we derive
an important identity (see Lemma 3.2). Then, we specify the required geometrical and
topological assumptions on the position of the observer and on the control sets ω1
and ω2 (see Definitions 3.4 and 3.5) and apply the above mentioned identity in order
to establish some crucial inequalities, given in Lemmas 3.3, 3.6 and 3.7. Finally, in
Lemma 3.8, we find the lower bound for the control time T . Taking into account the
wayω1 is constructed, it is possible to get different regions of controllability depending
on the observer point x0. The significance of the point x0 will be clear in Sect. 3. In
Sect. 4, via HUM, we prove the exact controllability result by constructing the suitable
isomorphism that allows us to identify the exact control.

The pioneer studies on exact controllability for the wave equation with transmis-
sion conditions, via HUM, go back to [43], Chapter 6. Here J. L. Lions considers a
Dirichlet problem with matrix constant on each component of the domain and a con-
trol on part of the external boundary. Later on, in [49] the authors deal with the case
of a Neumann boundary value problem in the same framework. In [2, 5, 12, 16, 31,
32, 56, 59] optimal control and exact controllability problems in domains with highly
oscillating boundary are studied. Moreover, we refer to [9–11, 42] for exact control-
lability of hyperbolic problems with oscillating coefficients in fixed and perforated
domains, respectively and, [34–37, 54], respectively, for optimal control and exact
controllability of hyperbolic problems in composites with imperfect interface. In [55],
it has been analyzed the exact boundary controllability for the same imperfect trans-
mission problem considered in the present paper. Further, in [40] the optimal control
of rigidity parameters of thin inclusions in composite materials has been investigated.
In [19–21] the authors, respectively, study the correctors and approximate control for
a class of parabolic equations with interfacial contact resistance, whereas in [23] the
approximate controllability of linear parabolic equations in perforated domains has
been studied. In [64] (see also [63]), the author studies the approximate controllability
of a parabolic problem with highly oscillating coefficients in a fixed domain. The null
controllability of semilinear heat equations in a fixed domain has been studied in [38].
The exact controllability and exact boundary controllability for semilinear wave equa-
tions, respectively, can be found in [41, 62]. Finally, for what concerns transmission
problems in the nonlinear case, we quote [24, 25] (see also [28, 29]).

2 Statement of the Problem

Let � be a connected open bounded subset of Rn , n ≥ 2. We denote by �1 and
�2, two non-empty open connected and disjoint subsets of � such that �2 ⊂ �

and �1 = � \ �2. Let us assume that the interface � = ∂�2 separating the two
components of � is Lipschitz continuous and observe that by construction one has

∂� ∩ � = ∅. (2.1)

123



Applied Mathematics & Optimization (2022) 85 :40 Page 5 of 33 40

Given T > 0, we set Q1 = �1 × (0, T ), Q2 = �2 × (0, T ), � = ∂� × (0, T ) and
�T = � × (0, T ).

This paper aims to study the internal exact controllability of a hyperbolic imperfect
transmission problem defined in the above mentioned domain. More precisely, given
two open subsets ωi of �i , i = 1, 2, and a control ζ := (ζ1, ζ2), we consider the
problem ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
1 − div (A(x)∇u1) = ζ1χω1 in Q1,

u′′
2 − div (A(x)∇u2) = ζ2χω2 in Q2,

A(x)∇u1n1 = −A(x)∇u2n2 on �T ,

A(x)∇u1n1 = −h(x)(u1 − u2) on �T ,

u1 = 0 on �,

u1(0) = U 0
1 , u′

1(0) = U 1
1 in �1,

u2(0) = U 0
2 , u′

2(0) = U 1
2 in �2,

(2.2)

where for any fixed i = 1, 2, ni is the unitary outward normal to �i and χωi denotes
the characteristic function of the set ωi on which acts the control ζi . For simplicity,
we denote the wave operator by L = ∂t t − div (A(x)∇ ) .

Let us recall the definitions of the required function spaces to study the interface
problem under consideration. They were introduced for the first time in [50] and
widely studied in [22] in the homogenization framework for the analogous stationary
problem. Indeed, these spaces take into account the geometry of the domain as well
as the boundary and interface conditions.

As observed in [8], the space

V = {v1 ∈ H1 (�1) | v1 = 0 on ∂�}

is a Banach space endowed with the norm

‖v1‖V = ‖∇v1‖L2(�1)
.

Since we do not impose any regularity on the external boundary, the condition on ∂�

in the definition of V has to be intended in a density sense. More precisely, in view
of (2.1), V can be defined as the closure of the set of the functions in C∞(�1) with a
compact support contained in � with respect to the H1(�1)-norm. We also set

H� =
{
v = (v1, v2) | v1 ∈ V and v2 ∈ H1(�2)

}
. (2.3)

The space H� is a Hilbert space when equipped with the norm

‖v‖2H�
= ‖∇v1‖2L2(�1)

+ ‖∇v2‖2L2(�2)
+ ‖v1 − v2‖2L2(�)

.

Indeed H� can be identified with V × H1(�2), the norm above defined on H� being
equivalent to the standard norm in V × H1(�2) (see [26] for details). We denote the
dual of H� by (H�)′. It follows that (see [19]), the norms of (H�)′ and V ′×(H1(�2))

′
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are equivalent. Moreover, if v = (v1, v2) ∈ (H�)′ and u = (u1, u2) ∈ H� , then

〈v, u〉(H�)′,H�
= 〈v1, u1〉V ′,V + 〈v2, u2〉H1(�2)′,H1(�2)

.

Remark 2.1 We point out that H� is a separable and reflexive Hilbert space dense
in L2 (�1) × L2 (�2). Furthermore, H� ⊆ L2 (�1) × L2 (�2) with continuous
imbedding. On the other hand, one has that L2 (�1) × L2 (�2) ⊆ (H�)′, with
L2 (�1)× L2 (�2) separable Hilbert space. This means that the triple (H�, L2 (�1)×
L2 (�2) , (H�)′) is an evolution triple. We refer the reader to [26, 27] for a detailed
analysis on this aspect. Also note that, in fact L2 (�1) × L2 (�2) can be identified
with L2 (�) itself by observing that v = (v1, v2) ∈ L2 (�1) × L2 (�2) if and only if
v = v1χ�1 +v2χ�2 ∈ L2 (�). By the way, due to the nature of our problem, through-
out this work we prefer to adopt the notation v = (v1, v2) ∈ L2 (�1) × L2 (�2).

Let us set

W =
{

v = (v1, v2) ∈ L2(0, T ; V × H1(�2)) :

v′ = (v′
1, v

′
2) ∈ L2(0, T ; L2(�1) × L2(�2))

}

,

(2.4)

which is a Hilbert space if equipped with the norm

‖v‖W = ‖v1‖L2(0,T ;V ) + ‖v2‖L2(0,T ;H1(�2)) + ∥
∥v′

1

∥
∥
L2(0,T ;L2(�1))

+ ∥
∥v′

2

∥
∥
L2(0,T ;L2(�2))

.

Note that the control ζ is such that

ζ ∈ W ′. (2.5)

We assume that the initial data of problem (2.2) are such that

{
(i)U 0 = (

U 0
1 ,U 0

2

) ∈ L2 (�1) × L2 (�2) ,

(ii) U 1 = (
U 1
1 ,U 1

2

) ∈ (H�)′ . (2.6)

Further, we suppose that A is a symmetric matrix field and there exist constants
α, β ∈ R, with 0 < α < β such that

⎧
⎨

⎩

(i) ai j ,
∂ai j
∂xk

∈ L∞ (�) , 1 ≤ i, j, k ≤ n,

(ii) (A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|,
(2.7)

for every λ ∈ R
n and a.e. in �. We put

M = max
1≤i, j,k≤n

max
x∈�

∣
∣
∣
∣
∂ai j
∂xk

∣
∣
∣
∣ . (2.8)
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The function h appearing in the interface condition satisfies

h ∈ L∞(�) and there exists h0 ∈ R such that 0 < h0 < h(x) a.e. in �. (2.9)

Note that the initial data (2.6) are in a weak space, hence the solution of problem
(2.2) cannot be defined using the standard weak formulation. We need to apply the so
called transposition method (see [45,Chap. 3, Sect. 9]), usually used in controllability
problems. In some sense, it is an adjoint method where the solution is defined via an
adjoint problemwhich provides test functions.More precisely, we define the following
standard adjoint problem: for every g = (g1, g2) ∈ L2(0, T ; L2 (�1) × L2 (�2)),
consider the backward problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lψi ≡ ψ ′′
i − div(A(x)∇ψi ) = gi in Qi , i = 1, 2

A(x)∇ψ1 n1 = −A(x)∇ψ2 n2 on �T ,

A(x)∇ψ1 n1 = −h(x)(ψ1 − ψ2) on �T ,

ψ1 = 0 on �,

ψi (T ) = ψ ′
i (T ) = 0 in �i , i = 1, 2.

(2.10)

As observed in [26], thanks to Remark 2.1, by using an approach to standard
evolutionary problems based on evolution triples (there are no weak data), the usual
weak formulation of problem (2.10) is valid. Hence an abstract Galerkin’s method
provides the existence and uniqueness result for the weak solution in W of problem
(2.10), together with the a priori estimate for the solution inW . For the sake of clarity,
throughout the paper, we denote by ψ(g) = (ψ1(g), ψ2(g)), the solution of problem
(2.10) and when there is no ambiguity, we omit the explicit dependence on the right
hand member.

Now we give the definition of solution of (2.2) in the sense of transposition.

Definition 2.2 For any fixed
(
U 0,U 1

) ∈ (
L2 (�1) × L2 (�2)

)× (H�)′, we say that a
function u = (u1, u2) ∈ L2(0, T ; L2 (�1) × L2 (�2)) is a solution of problem (2.2),
in the sense of transposition, if it satisfies the identity

∫

Q1

u1g1dxdt +
∫

Q2

u2g2dxdt

= −
∫

�1

U 0
1ψ ′

1(0)dx +
〈
U 1
1 , ψ1(0)

〉

V ′,V
−

∫

�2

U 0
2ψ ′

2(0)dx

+
〈
U 1
2 , ψ2(0)

〉

(H1(�2))′,H1(�2)
+ 〈ζχω,ψ〉W ′,W ,

(2.11)

for all g = (g1, g2) ∈ L2(0, T ; L2 (�1) × L2 (�2)), where ψ is the solution of
problem (2.10). Here we have used the notation ζχω = (ζ1χω1, ζ2χω2).

By classical results (see [45,Chap. 3, Sect. 9, Theorems 9.3 and 9.4]), problem (2.2)
admits a unique solution u ∈ C

([0, T ]; L2 (�1) × L2 (�2)
) ∩ C1

([0, T ]; (H�)′
)
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satisfying the estimate

‖u‖L∞(0,T ;L2(�1)×L2(�2))
+ ‖u′‖L∞(0,T ;(H�)′) ≤ C(‖U 0‖L2(�1)×L2(�2)

+ ‖U 1‖(H�)′ + ‖ζχω‖W ′),
(2.12)

with C positive constant.
We denote by u (ζ ) = (u1 (ζ ) , u2 (ζ )) the solution of problem (2.2) in the sense

above defined and, when there is no ambiguity, we omit the explicit dependence on
the control.

Now, let us give the definition of exact controllability.

Definition 2.3 System (2.2) is said to be exactly controllable at time T > 0, if for
every

(
U 0,U 1

)
,
(
Z0, Z1

)
in

(
L2 (�1) × L2 (�2)

) × (H�)′, there exists a control ζ

belonging to W ′ such that the corresponding solution u of problem (2.2) satisfies

u(T ) = Z0, u′(T ) = Z1.

If the controllability is achieved for the zero (null) data Z0 = 0, Z1 = 0, then it is
known as null controllability. Since our problem is linear and reversible in time (see
[65]), it is sufficient to look for controls driving the system to rest. Hence, in the sequel
we prove the existence of a control ζ ∈ W ′ of (2.2) such that u(T ) = u′(T ) = 0.

In this paper, we wish to prove a controllability result, but as remarked in the intro-
duction, it is not possible to achieve controllability without additional assumptions.
Namely, if �2 is star-shaped with respect to a point x0 ∈ �2 and under suitable geo-
metrical assumptions on the sets ω1 and ω2, we are able to prove that system (2.2)
is exact controllable for a time T > 0 sufficiently large (see Theorem 4.1). To this
aim, we will use a constructive method known as the Hilbert Uniqueness Method
introduced by Lions (see [42, 43]). We point out that the control obtained by HUM
is also the energy minimizing control. HUM is fully a PDE based method and even-
tually it reduces to deriving the so-called observability estimate, which is the crucial
point, corresponding to an uncontrolled problem (see (3.1)). To get the observability
estimate, which is a delicate estimate from below, we need to establish some funda-
mental results based on the Lagrange multipliers method. These results are proved in
the following section.

3 The Observability Inequality

For T > 0, we consider the following homogeneous imperfect transmission problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lzi ≡ z′′i − div (A(x)∇zi ) = 0 in Qi , i = 1, 2
A(x)∇z1n1 = −A(x)∇z2n2 on �T ,

A(x)∇z1n1 = −h(x)(z1 − z2) on �T ,

z1 = 0 on �,

zi (0) = z0i , z′i (0) = z1i in �i , i = 1, 2

(3.1)
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with the initial data

z0 =
(
z01, z

0
2

)
∈ H�, z1 =

(
z11, z

1
2

)
∈ L2 (�1) × L2 (�2) , (3.2)

where ni is the unitary outward normal to �i , i = 1, 2. The weak formulation of
problem (3.1) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Findz = (z1, z2) inW such that

〈z′′1, v1〉V ′,V + 〈z′′2, v2〉(H1(�2))′,H1(�2)
+

∫

�1

A(x)∇z1∇v1dx

+ ∫

�2
A(x)∇z2∇v2 dx +

∫

�

h(x)(z1 − z2)(v1 − v2) dσx = 0

for all (v1, v2)∈V×H1(�2)in D′(0, T ), zi (0)= z0i , z′i (0)= z1i in �i , i=1, 2.

(3.3)

As already observed, in [26] the authors prove the existence and uniqueness result for
the weak solution in W of problem (3.1) together with some a priori estimates.

Theorem 3.1 ([26]) Let T > 0, H� and W be defined as in (2.3) and (2.4). Under
hypotheses (2.7), (2.9) and (3.2), problem (3.1) admits a unique weak solution z ∈ W.
Moreover, there exists a positive constant C, such that

‖z‖L∞(0,T ;H�) + ∥
∥z′

∥
∥
L∞(0,T ;L2(�1)×L2(�2))

≤ C

(∥
∥
∥z0

∥
∥
∥
H�

+
∥
∥
∥z1

∥
∥
∥
L2(�1)×L2(�2)

)

. (3.4)

Let us remark that the solution of problem (3.1) has some further properties (see
[45], Chapter 3, Theorem 8.2). In fact, under the same hypotheses of Theorem 3.1,
the unique solution z of problem (3.1) satisfies

z ∈ C ([0, T ] ; H�) , z′ ∈ C
(
[0, T ] ; L2 (�1) × L2 (�2)

)
.

Hence the initial values z(0) and z′(0) are meaningful in the appropriate spaces.
Now, we derive an important identity using suitable multipliers. It is essential for

establishing the inverse inequalities involved in the exact controllability problem. For
convenience, we use the repeated index summation convention. Moreover, when there
is no ambiguity, we omit the explicit dependence on the space variable x in the matrix
A and in the function h.
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Lemma 3.2 Let q = (q1, . . . qn) be a vector field in (W 1,∞(�))n and let z = (z1, z2)
be the solution of problem (3.1)–(3.2). Then, the following identity holds

1

2

∫

�

An1n1

(
∂z1
∂n1

)2

qkn1k dσx dt + 1

2

2∑

i=1

∫

�T

Anini

(
∂zi
∂ni

)2

qknik dσx dt

−
∫

�T

h (z1 − z2) qk (∇σ (z1 − z2))k dσx dt

+ 1

2

2∑

i=1

∫

�T

(
|z′i |2 − A∇σ zi∇σ zi

)
qknik dσx dt

=
2∑

i=1

(

z′i , qk
∂zi
∂xk

)

�i

∣
∣
∣
∣
∣

T

0

+ 1

2

2∑

i=1

∫

Qi

(
|z′i |2 − A∇zi∇zi

) ∂qk
∂xk

dx dt

+
2∑

i=1

∫

Qi

A∇zi∇qk
∂zi
∂xk

dx dt − 1

2

2∑

i=1

∫

Qi

qk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt,

(3.5)

where
(

z′i , qk
∂zi
∂xk

)

�i

=
∫

�i

z′i (t)qk
∂zi (t)

∂xk
dx

and ∇σ zi = (σ j zi )nj=1 denotes the tangential gradient of zi on � for i = 1, 2 ( see,
for instance, [43,p. 137]).

Proof We prove the result for a strong solution of problem (3.1), that is under the
following more regular initial data

{
z0 = (

z01, z
0
2

) ∈ (H2(�1) ∩ V ) × H2(�2),

z1 = (
z11, z

1
2

) ∈ V × H1 (�2) .
(3.6)

Indeed one can easily prove that it holds also considering the weaker hypotheses (3.2)
(see for instance [43]).

Let us multiply the first equation in (3.1) by qk
∂z1
∂xk

and then integrate on [0, T ] to
get

∫ T

0
〈z′′1, qk

∂z1
∂xk

〉V ′,V dt +
∫

Q1

A∇z1∇
(

qk
∂z1
∂xk

)

dx dt

−
∫

�

A∇z1qk
∂z1
∂xk

n1 dσx dt −
∫

�T

A∇z1qk
∂z1
∂xk

n1 dσx dt = 0. (3.7)

For clearness sake, let us rewrite the above identity as

I1 + I2 + I3 + I4 = 0.
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Applying integration by parts and Gauss-Green theorem repeatedly, we get

I1 =
∫

�1

z′1qk
∂z1
∂xk

dx

∣
∣
∣
∣

T

0
−

∫

Q1

z′1qk
∂z′1
∂xk

dx dt

=
∫

�1

z′1qk
∂z1
∂xk

dx

∣
∣
∣
∣

T

0
− 1

2

∫

Q1

∂

∂xk

∣
∣z′1

∣
∣2 qk dx dt

=
∫

�1

z′1qk
∂z1
∂xk

dx

∣
∣
∣
∣

T

0
+ 1

2

∫

Q1

∣
∣z′1

∣
∣2 ∂qk

∂xk
dx dt − 1

2

∫

�

∣
∣z′1

∣
∣2 qkn1k dσx dt

−1

2

∫

�T

∣
∣z′1

∣
∣2 qkn1k dσx dt .

Since z1 = 0 on � implies z′1 = 0 on � by stronger regularity assumptions, the third
term vanishes. Hence we get

I1 =
∫

�1

z′1qk
∂z1
∂xk

dx

∣
∣
∣
∣

T

0
+ 1

2

∫

Q1

∣
∣z′1

∣
∣2 ∂qk

∂xk
dx dt − 1

2

∫

�T

∣
∣z′1

∣
∣2 qkn1k dσx dt .

Now, we compute I2

I2 =
∫

Q1

A∇z1∇qk
∂z1
∂xk

dx dt +
∫

Q1

A∇z1qk∇ ∂z1
∂xk

dx dt

=
∫

Q1

A∇z1∇qk
∂z1
∂xk

dx dt +
∫

Q1

A∇z1qk
∂

∂xk
∇z1 dx dt

=
∫

Q1

A∇z1∇qk
∂z1
∂xk

dx dt − 1

2

∫

Q1

A∇z1∇z1
∂qk
∂xk

dx dt

−1

2

∫

Q1

qk

n∑

l, j=1

∂al j
∂xk

∂z1
∂xl

∂z1
∂x j

dx dt

+1

2

∫

�

A∇z1∇z1qkn1k dσx dt + 1

2

∫

�T

A∇z1∇z1qkn1k dσx dt .

Moreover, since z1 = 0 on �, one has ∇z1 = ∂z1
∂n1

n1 on �, that is
∂z1
∂xk

= ∂z1
∂n1

n1k ,

hence I3 becomes

I3 = −
∫

�

An1n1qkn1k

(
∂z1
∂n1

)2

dσx dt .
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Also note that the fourth term in the last expression for I2 is − 1
2 I3. Combining the

computations for I1, I2, I3 in (3.7), we can get the following identity for z1

∫

�1

z′1qk
∂z1
∂xk

dx

∣
∣
∣
∣

T

0
+ 1

2

∫

Q1

∣
∣z′1

∣
∣2 ∂qk

∂xk
dx dt − 1

2

∫

�T

∣
∣z′1

∣
∣2 qkn1k dσx dt

+
∫

Q1

A∇z1∇qk
∂z1
∂xk

dx dt − 1

2

∫

Q1

A∇z1∇z1
∂qk
∂xk

dx dt

− 1

2

∫

Q1

qk

n∑

l, j=1

∂al, j
∂xk

∂z1
∂xl

∂z1
∂x j

dx dt + 1

2

∫

�

A∇z1∇z1qkn1k dσx dt

+ 1

2

∫

�T

A∇z1∇z1qkn1k dσx dt

−
∫

�

An1n1qkn1k

(
∂z1
∂n1

)2

dσx dt −
∫

�T

A∇z1n1qk
∂z1
∂xk

dσx dt = 0.

(3.8)

Analogously, multiplying the second equation in (3.1) by qk
∂z2
∂xk

and then integrating

on [0, T ], we get

∫

�2

z′2qk
∂z2
∂xk

dx

∣
∣
∣
∣

T

0
+ 1

2

∫

Q2

∣
∣z′2

∣
∣2 ∂qk

∂xk
dx dt − 1

2

∫

�T

∣
∣z′2

∣
∣2 qkn2k dσx dt

+
∫

Q2

A∇z2∇qk
∂z2
∂xk

dx dt − 1

2

∫

Q2

A∇z2∇z2
∂qk
∂xk

dx dt

− 1

2

∫

Q2

qk

n∑

l, j=1

∂al, j
∂xk

∂z2
∂xl

∂z2
∂x j

dx dt + 1

2

∫

�T

A∇z2∇z2qkn2k dσx dt

−
∫

�T

A∇z2n2qk
∂z2
∂xk

dσx dt = 0.

(3.9)

Let us note that this last identity is similar to (3.8) except for the integral terms defined
on the boundary �. This is due to the fact that z2 is defined on �2 whose boundary is
only �.
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By summing up the identities (3.8) and (3.9), we obtain

2∑

i=1

(

z′i , qk
∂zi
∂xk

)

�i

∣
∣
∣
∣
∣

T

0

+ 1

2

2∑

i=1

∫

Qi

(
|z′i |2 − A∇zi∇zi

) ∂qk
∂xk

dx dt

+
2∑

i=1

∫

Qi

A∇zi∇qk
∂zi
∂xk

dx dt

−
2∑

i=1

1

2

∫

Qi

qk

n∑

l, j=1

∂al, j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt − 1

2

2∑

i=1

∫

�T

∣
∣z′i

∣
∣2 qknik dσx dt

+ 1

2

2∑

i=1

∫

�T

A∇zi∇ziqknik dσx dt −
2∑

i=1

∫

�T

A∇zi niqk
∂zi
∂xk

dσx dt

− 1

2

∫

�

An1n1qkn1k

(
∂z1
∂n1

)2

dσx dt = 0.

(3.10)

The above identity is nearly close to the claimed one except for the third line. Never-
theless, if we observe that, for any fixed i = 1, 2 we have

∇zi = ∂zi
∂ni

ni + ∇σ zi (3.11)

on the interface �, by the symmetry of A, the third line of (3.10) becomes

1

2

∫

�T

A∇zi∇ziqknik dσx dt −
∫

�T

A∇zi niqk
∂zi
∂xk

dσx dt =

= 1

2

∫

�T

A

(
∂zi
∂ni

ni + ∇σ zi

) (
∂zi
∂ni

ni + ∇σ zi

)

qknik dσx dt

−
∫

�T

A

(
∂zi
∂ni

ni + ∇σ zi

)

niqk

(
∂zi
∂ni

nik + (∇σ zi )k

)

dσx dt

= 1

2

∫

�T

Anini

(
∂zi
∂ni

)2

qknik dσx dt +
∫

�T

Ani∇σ zi
∂zi
∂ni

qknik dσx dt (3.12)

+1

2

∫

�T

A∇σ zi∇σ ziqknik dσx dt

−
∫

�T

Anini

(
∂zi
∂ni

)2

qknik dσx dt −
∫

�T

A∇σ zi niqk
∂zi
∂ni

nik dσx dt

−
∫

�T

A∇zi niqk(∇σ zi )k dσx dt
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= −1

2

∫

�T

Anini

(
∂zi
∂ni

)2

qknik dσx dt

+1

2

∫

�T

A∇σ zi∇σ ziqknik dσx dt −
∫

�T

A∇zi niqk(∇σ zi )k dσx dt .

By putting (3.12) into (3.10), taking into account the interface condition in problem
(3.1) and since n2 = −n1, we finally obtain the required identity

2∑

i=1

(

z′i , qk
∂zi
∂xk

)

�i

∣
∣
∣
∣
∣

T

0

+ 1

2

2∑

i=1

∫

Qi

(
|z′i |2 − A∇zi∇zi

) ∂qk
∂xk

dx dt

+
2∑

i=1

∫

Qi

A∇zi∇qk
∂zi
∂xk

dx dt

−
2∑

i=1

1

2

∫

Qi

qk

n∑

l, j=1

∂al, j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt

−1

2

2∑

i=1

∫

�T

∣
∣z′i

∣
∣2 qknik dσx dt

−
2∑

i=1

1

2

∫

�T

Anini

(
∂zi
∂ni

)2

qknik dσx dt +
2∑

i=1

1

2

∫

�T

A∇σ zi∇σ ziqknik dσx dt

+
∫

�T

h (z1 − z2) qk (∇σ (z1 − z2))k dσx dt

−
∫

�

An1n1qkn1k

(
∂z1
∂n1

)2

dσx dt = 0.

This completes the proof of the lemma. ��
At this point we want to apply the above identity for a particular choice of the

vector field q in order to derive the observability estimate. To this aim we adapt to our
context some arguments introduced in [43, 44].

Let x0 ∈ R
n and set

m(x) = x − x0 = (xk − x0k )
n
k=1. (3.13)

We divide the boundary ∂� into two parts, i.e.

∂�(x0) = {x ∈ ∂� : m(x)n1(x) = mk(x)n1k(x) > 0} (3.14)

and

∂�∗(x0) = ∂� \ ∂�(x0).
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We denote

�(x0) = ∂�(x0) × (0, T ) and �∗(x0) = ∂�∗(x0) × (0, T ).

Further, let us define

Ri (x
0) = max

x∈�i

|m(x)|for i = 1, 2 and R(x0) = max
x∈�

|m(x)|. (3.15)

Some remarks are in order. Usually, in the context of controllability problems, the point
x0 can be viewed as an observer and ∂�(x0) is strictly related to the action region,
where the control is acting. The choice of x0 gives various control regions according
to the position of the observer and has advantages and disadvantages. For example,
if � is a circle, geometrically, ∂�(x0) is concave to the observer. More in particular,
if x0 is a point inside �, then ∂�(x0) = ∂�, since the entire boundary is concave to
any point inside. On the other hand, if x0 is outside �, then drawing the tangents from
x0, the boundary is divided into two parts, where ∂�(x0) is concave to x0 (related to
the control region) and ∂�∗(x0) is convex to x0 (not related to the control region).
When dealing with internal controllability, the control region is a neighbourhood of
∂�(x0). In our case, due to the geometry of the domain, we need to introduce a further
control set which is a neighbourhood of the whole interface. As we will see later on,
the choice of x0 will play a fundamental role also on the control time (see Lemmas
3.8 and 3.9). In the following, we introduce the energy E(t) of problem (3.1)–(3.2)

E(t) = 1

2

[ ∫

�1

|z′1(t)|2dx +
∫

�2

|z′2(t)|2dx +
∫

�1

A∇z1(t)∇z1(t)dx

+
∫

�2

A∇z2(t)∇z2(t)dx +
∫

�

h |z1(t) − z2(t)|2 dσx

]

. (3.16)

Let us note that E(t) is conserved (see [27], Lemma 4.1), that is

E(t) = E(0), for all t ∈ [0, T ]. (3.17)

We set

S = 1

2

∫

�

An1n1

(
∂z1
∂n1

)2

mkn1k dσx dt + 1

2

2∑

i=1

∫

�T

Anini

(
∂zi
∂ni

)2

mknik dσx dt

−
∫

�T

h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+1

2

2∑

i=1

∫

�T

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt . (3.18)

Let us observe that S is nothing else that the left-hand side of (3.5). We want to
find a lower bound for S. To this aim we introduce a technical geometrical assumption
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concerning not only the position of the observer x0 but also the geometry of the domain
�2. This geometrical property will characterize the choice of the control region related
to the interface (see Definition 3.5 and Lemma 3.7).

Lemma 3.3 Let us suppose that �2 is star-shaped with respect to a point x0 ∈ �2.
Let z = (z1, z2) the solution of problem (3.1)–(3.2). Then, for any T > 0, it holds

S ≥
[

T

(

1 − nR(x0)M

α

)

− 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)]

E(0), (3.19)

with M defined as in (2.8) and S as in (3.18).

Proof We take qk = mk = xk − x0k , for k = 1, . . . , n, in the identity (3.5). Then,

∇qk = ∇mk = ek , where ek is the canonical basis element. In particular
∂mk

∂xk
= 1

and thus
n∑

k=1

∂mk

∂xk
= n. Hence, we have

S =
2∑

i=1

(

z′i ,mk
∂zi
∂xk

)

�i

∣
∣
∣
∣
∣

T

0

+ n

2

2∑

i=1

∫

Qi

(
|z′i |2 − A∇zi∇zi

)
dx dt

+
2∑

i=1

∫

Qi

A∇zi∇zi dx dt − 1

2

2∑

i=1

∫

Qi

mk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt

=S1 + S2 + S3 + S4.

(3.20)

We want to estimate S1 + S2 + S3 + S4. Let us pose

Xi =
(

z′i (t),mk
∂zi (t)

∂xk

)

�i

∣
∣
∣
∣
∣

T

0

(3.21)

and

Yi =
∫

Qi

(
|z′i |2 − A∇zi∇zi

)
dx dt (3.22)

for i = 1, 2. Hence, S1 = X1 + X2, S2 = n

2
(Y1 + Y2) and therefore (3.20) can be

rewritten as

S = S1 + S2 + S3 + S4 = (X1 + X2) + n − 1

2
(Y1 + Y2)

+1

2

2∑

i=1

∫

Qi

(
|z′i |2 + A∇zi∇zi

)
dx dt

−1

2

2∑

i=1

∫

Qi

mk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt . (3.23)
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Taking into account (3.16) and the conservation law (3.17), we get

S1 + S2 + S3 + S4 = (X1 + X2) + n − 1

2
(Y1 + Y2) + E(0)T

− 1

2

∫

�T

h |z1 − z2|2 dσx dt

− 1

2

2∑

i=1

∫

Qi

mk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt .

(3.24)

By multiplying the PDEs in (3.1) by z1 and z2 respectively, and taking into account
interface and boundary conditions, we get

Y1 + Y2 =
2∑

i=1

(
z′i (t), zi (t)

)

�i

∣
∣
∣
T

0
+

∫

�T

h (z1 − z2)
2 dσx dt .

Hence (3.24) becomes

S1 + S2 + S3 + S4 = Z1 + Z2 + E(0)T + n − 2

2

∫

�T

h |z1(t) − z2(t)|2 dσx dt

− 1

2

2∑

i=1

∫

Qi

mk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt,
(3.25)

where

Zi =
(

z′i (t),mk
∂zi (t)

∂xk
+ n − 1

2
zi (t)

)

�i

∣
∣
∣
∣
∣

T

0

, for i = 1, 2. (3.26)

Thus, we have an E(0)T term. We need to see that it is a leading term. Thus, we
need to estimate the other terms in (3.25). To this aim, let us fix i ∈ {1, 2}. By Young
inequality we get

∣
∣
∣
∣
∣

(

z′i (t),mk
∂zi (t)

∂xk
+ n − 1

2
zi (t)

)

�i

∣
∣
∣
∣
∣
≤

∫

�i

∣
∣z′i (t)

∣
∣

∣
∣
∣
∣mk

∂zi (t)

∂xk
+ n − 1

2
zi (t)

∣
∣
∣
∣ dx

≤ μ

2

∫

�i

∣
∣z′i (t)

∣
∣2 dx + 1

2μ

∫

�i

×
∣
∣
∣
∣mk

∂zi (t)

∂xk
+ n − 1

2
zi (t)

∣
∣
∣
∣

2

dx,

(3.27)
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where μ is an arbitrary positive constant. By applying Gauss–Green, it holds

∫

�i

mk
∂zi (t)

∂xk
zi (t) dx = 1

2

∫

�i

mk
∂

∂xk
|zi (t)|2

= −n

2

∫

�i

|zi (t)|2 dx + 1

2

∫

�

mknik |zi (t)|2 dσx .

Hence, by (3.15), the second term in the right hand side of (3.27) can be estimated as

∫

�i

∣
∣
∣
∣mk

∂zi (t)

∂xk
+ n − 1

2
zi (t)

∣
∣
∣
∣

2

dx =
∫

�i

∣
∣
∣
∣mk

∂zi (t)

∂xk

∣
∣
∣
∣

2

dx

+
[
(n − 1)2

4
− n(n − 1)

2

] ∫

�i

|zi (t)|2 dx

+ n − 1

2

∫

�

mknik |zi (t)|2 dσx

≤ (Ri (x
0))2

∫

�i

|∇zi (t)|2 dx

+ n − 1

2

∫

�

mknik |zi (t)|2 dσx ,

(3.28)

where, we have used the fact that
(n − 1)2

4
− n(n − 1)

2
< 0. Let us note that by (3.15)

R(x0) = R1(x
0) > R2(x

0), (3.29)

since x0 ∈ �2, thus, by putting (3.28) into (3.27) and taking into account (2.7), we
obtain

∣
∣
∣
∣
∣

(

z′i (t),mk
∂zi (t)

∂xk
+ n − 1

2
zi (t)

)

�i

∣
∣
∣
∣
∣
≤ μ

2

∫

�i

∣
∣z′i (t)

∣
∣2 dx

+ (R(x0))2

2αμ

∫

�i
A∇zi (t)∇zi (t) dx

+n − 1

4μ

∫

�

mknik |zi (t)|2 dσx .

(3.30)

Let us consider the last term in (3.30), for i = 1, 2. We observe that

∣
∣
∣
∣
1

2
|z1(t)|2 − |z2(t)|2

∣
∣
∣
∣ ≤ |z1(t) − z2(t)|2 , ∀ t ∈ [0, T ].
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Moreover, by our assumption on x0 and since n1 = −n2 on �, it holds thatmkn1k ≤ 0
on �. Hence, we get

2∑

i=1

∫

�

mknik |zi (t)|2 dσx =
∫

�

mkn1k
(
|z1(t)|2 − |z2(t)|2

)
dσx

≤
∫

�

mkn1k

(
1

2
|z1(t)|2 − |z2(t)|2

)

dσx

≤
∫

�

|mkn1k |
∣
∣
∣
∣
1

2
|z1(t)|2 − |z2(t)|2

∣
∣
∣
∣ dσx

≤ ‖m‖L∞(�)

∫

�

∣
∣
∣
∣
1

2
|z1(t)|2 − |z2(t)|2

∣
∣
∣
∣ dσx

≤ R(x0)

h0

∫

�

h (z1(t) − z2(t))
2 dσx .

(3.31)

Taking into account (3.30) and (3.31), we get the estimate

2∑

i=1

∣
∣
∣
∣
∣

(

z′i (t),mk
∂zi (t)

∂xk
+ n − 1

2
zi (t)

)

�i

∣
∣
∣
∣
∣
≤ μ

2

2∑

i=1

∫

�i

∣
∣z′i (t)

∣
∣2 dx

+ (R(x0))2

2αμ

2∑

i=1

∫

�i

A∇zi (t)∇zi (t) dx

+ (n − 1)R(x0)

4μh0

∫

�

h (z1(t) − z2(t))
2 dσx

≤ max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)

E(t).

(3.32)

The last inequality follows by choosing μ = R(x0)√
α

and by the definition of energy

as in (3.16). Hence by (3.17) and taking into account (3.26), we readily see that

|Z1 + Z2| ≤ 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)

E(0). (3.33)

The estimate of the last term in (3.25) is straight forward using the ellipticity and
boundedness of the matrix A (see also [48]). More precisely, taking into account the
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energy definition in (3.16), we have

∣
∣
∣
∣
∣
∣

1

2

2∑

i=1

∫

Qi

mk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt

∣
∣
∣
∣
∣
∣
≤

n∑

i=1

nRi (x0)M

2α

∫

Qi

A∇zi∇zi dx dt

≤ nR(x0)M

α
T E(0).

(3.34)

By putting (3.33) and (3.34) into (3.25), we finally arrive at the lower bound

S ≥ −2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)

E(0) + E(0)T − nR(x0)M

α
T E(0). (3.35)

The proof is now complete. ��
We now specify the required topological assumptions on the control regionsω1 and

ω2 in order to obtain our exact controllability result. See Fig. 1 and Fig. 2 for sample
domains.

Definition 3.4 Let x0 be as in the hypotheses of Lemma 3.3 and let ∂�(x0) be defined
as in (3.14). We say that ω1 ⊂ �1 is a neighbourhood of ∂�(x0) if there exists some
neighbourhood O ⊂ R

n of ∂�(x0) such that

ω1 = �1 ∩ O.

Definition 3.5 We say thatω2 ⊂ �2 is a neighborhood of � in�2, if there exists some
neighborhood O ⊂ R

n of � such that

ω2 = �2 ∩ O.

We will now establish a couple of important results which are crucial to get the
observability inequality given in Lemma 3.9 below. In this direction, we consider the
function τ = (τ1, . . . τk) ∈ (C1(Rn))n satisfying the following properties:

⎧
⎨

⎩

(i) τ · n1 = 1 on∂�,

(ii) supp τ ⊂ ω1,

(iii) ‖τ‖(L∞(ω1))n ≤ 1.
(3.36)

The existence of such a vectorial field is proved in [43].

Lemma 3.6 Let ω1 be a neighborhood of ∂�(x0) and let z = (z1, z2) the solution of
problem (3.1)–(3.2). Then, for any T > 0, it holds

1

2

∣
∣
∣
∣
∣

∫

�(x0)
An1 n1

(
∂z1
∂n1

)2

dσx dt

∣
∣
∣
∣
∣
≤ 2max

(

1,
1

α

)

E(0)

+C
∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt .(3.37)
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Proof Taking qk = τk , k = 1, . . . , n, in (3.5), by (3.36)i) and (3.36)ii) we get

1

2

∫

�(x0)
An1n1

(
∂z1
∂n1

)2

dσx dt

=
(

z′1, τk
∂z1
∂xk

)

ω1

∣
∣
∣
∣
∣

T

0

+ 1

2

∫ T

0

∫

ω1

(
|z′1|2 − A∇z1∇z1

) ∂τk

∂xk
dx dt

+
∫ T

0

∫

ω1

A∇z1∇τk
∂z1
∂xk

dx dt

− 1

2

∫ T

0

∫

ω1

τk

n∑

l, j=1

∂al j
∂xk

∂z1
∂xl

∂z1
∂x j

dx dt .

(3.38)

Passing to the absolute value, by (3.16), (3.36)iii), Young inequality, the conservation
law and since τ ∈ (C1(Rn))n , we obtain

1

2

∣
∣
∣
∣
∣

∫

�(x0)
An1n1

(
∂z1
∂n1

)2

dσx dt

∣
∣
∣
∣
∣
≤= 1

2

∫

ω1

∣
∣z′1(0)

∣
∣2 dx

+1

2

∫

ω1

∣
∣z′1(T )

∣
∣2 dx + 1

2

∫

ω1
|∇z1(0)|2 dx

+1

2

∫

ω1

|∇z1(T )|2 dx + C1

∫ T

0

∫

ω1

(
|z′1|2 + A∇z1∇z1

)
dx dt

+C2

∫ T

0

∫

ω1

A∇z1∇z1 dx dt + C3

∫ T

0

∫

ω1

|∇z1|2 dx dt ≤

≤ 2max

(

1,
1

α

)

E(0) + C
∫ T

0

∫

ω1

(
|z′1|2 + |∇z1|2

)
dx dt .

��

We will get a similar result for the neighborhood ω2. To this aim, let w ∈ C1(Rn)

be such that ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) supp w ⊂ ω2,

(ii) 0 ≤ w ≤ 1 in ω2,

(iii) w = 1 on �,

(iv) ‖∇w‖L∞(Rn) ≤ C .

(3.39)
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The existence of w is quite standard, see for example, [43]. Let us denote

S�T = 1

2

2∑

i=1

∫

�T

Anini

(
∂zi
∂ni

)2

mknik dσx dt

− ∫

�T
h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+1

2

2∑

i=1

∫

�T

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt .

we want to find an upper bound for S�T .

Lemma 3.7 Letω2 be a neighborhood of� and let z = (z1, z2) the solution of problem
(3.1)–(3.2). Then, for any T > 0, it holds

∣
∣S�T

∣
∣ ≤ 2max

(

1,
R2(x0)

α

)

E(0) + C
∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt . (3.40)

Proof Let us choose in (3.5) qk = mk w, k = 1, . . . , n. By Young inequality, (3.16)
and the conservation law, we obtain

∣
∣S�T

∣
∣ ≤ 1

2

∫

ω2

∣
∣z′2(0)

∣
∣2 dx + 1

2

∫

ω2

∣
∣z′2(T )

∣
∣2 dx + R2(x0)

2

∫

ω2

|∇z2(0)|2 dx

+ R2(x0)

2

∫

ω2

|∇z2(T )|2 dx + n

2

∫ T

0

∫

ω2

(
|z′2|2 + A∇z2∇z2

)
dx dt

+C0

∫ T

0

∫

ω2

(
|z′2|2 + A∇z2∇z2

)
dx dt

+C1

∫ T

0

∫

ω2

A∇z2∇z2 dx dt + C2

∫ T

0

∫

ω2

|∇z2|2 dx dt

≤ 2max

(

1,
R2(x0)

α

)

E(0) + C
∫ T

0

∫

ω2

(
|z′2|2 + |∇z2|2

)
dx dt .

��

Collecting together the results of Lemmas 3.3, 3.6 and 3.7, we obtain the following
lower estimate.

Lemma 3.8 Let us suppose that �2 is star-shaped with respect to a point x0 ∈ �2
satisfying

R(x0) <
α

nM
. (3.41)
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Assume ω1 and ω2 are neighbourhoods of ∂�(x0) and � respectively, and let z =
(z1, z2) the solution of problem (3.1)–(3.2). Then, there exists T0 > 0 such that

E(0) ≤ C1(T )

∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt

+ C2(T )

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt,

(3.42)

for T large enough so that
T − T0

T
>

nR(x0)M

α
. (3.43)

Proof By putting (3.37) and (3.40) into (3.19), we get

[

T

(

1 − nR(x0)M

α

)

− 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)]

E(0)

≤ 2max

(

1, R(x0),
R(x0)

α
,
R2(x0)

α

)

E(0)

+C1

∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt + C2

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt .

Denoting

T0 = 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)

+ 2max

(

1, R(x0),
R(x0)

α
,
R2(x0)

α

)

, (3.44)

we obtain

[

T

(

1 − nR(x0)M

α

)

− T0

]

E(0) ≤ C1

∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt

+C2

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt .

Thus, if (3.41) is satisfied and ifT is large enough so that (3.43) holds,T

(

1 − nR(x0)M

α

)

−
T0 is positive and we get the result. ��

Some comments are in order. For sake of simplicity, all integrals in previous lemmas
are written between 0 and T . Actually they could, as well, have been written between
ε and T − ε with ε > 0 and sufficiently small. More precisely, by using (3.16) and
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the conservation law, the inequalities (3.19), (3.37) and (3.40) can be written as

1

2

∫ T−ε

ε

∫

∂�

An1n1

(
∂z1
∂n1

)2

mkn1k dσx dt

+1

2

2∑

i=1

∫ T−ε

ε

∫

�

Anini

(
∂zi
∂ni

)2

mknik dσx dt

−
∫ T−ε

ε

∫

�

h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+1

2

2∑

i=1

∫ T−ε

ε

∫

�

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

≥
[

(T − 2ε)

(

1 − nR(x0)M

2α

)

− 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)]

E(0),

×1

2

∣
∣
∣
∣
∣

∫ T−ε

ε

∫

∂�(x0)
An1n1

(
∂z1
∂n1

)2

mkn1k dσx dt

∣
∣
∣
∣
∣

≤ 2max

(

1,
1

α

)

E(0)

+C1

∫ T−ε

ε

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt,

and

1

2

∣
∣
∣
∣

2∑

i=1

∫ T−ε

ε

∫

�

Anini

(
∂zi
∂ni

)2

mknik dσx dt

−
∫ T−ε

ε

∫

�

h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+1

2

2∑

i=1

∫ T−ε

ε

∫

�

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

∣
∣
∣
∣

≤ 2max

(

1,
R2(x0)

α

)

E(0) + C2

∫ T−ε

ε

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt,

respectively. By arguing as in Lemma 3.8, if ε is chosen to have T − 2ε large enough
so that

(T − 2ε) − T0
(T − 2ε)

>
nR(x0)M

α
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and if (3.41) is satisfied, we get

E(0) ≤ C1(T )

∫ T−ε

ε

∫

ω1

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt

+C2(T )

∫ T−ε

ε

∫

ω2

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt . (3.45)

Now, we can prove the observability inequality which is crucial to establish the
exact controllability result.

Lemma 3.9 (observability inequality) Let us suppose that �2 is star-shaped with
respect to a point x0 ∈ �2 satisfying condition (3.41). Assume that ω1 and ω2 are
neighbourhoods of ∂�(x0) and � respectively and let z = (z1, z2) be the solution of
problem (3.1)–(3.2). Then there exists T0 > 0 such that

E(0) ≤ C1(T )

∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |z1|2

)
dx dt

+ C2(T )

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |z2|2

)
dx dt,

(3.46)

for T large enough so that
T − T0

T
>

R(x0)M

α
. (3.47)

Proof In view of (3.42), we need to estimate ∇zi in terms of zi and z′i , i = 1, 2. Let
ω01 ⊂ �1 be a neighborhood of ∂�(x0) and ω02 ⊂ �2 be a neighborhood of � such
that

� ∩ ω0i ⊂ ωi , i = 1, 2.

Note that (3.45) is true for any neighborhood of ∂�(x0) and �, then it is also true
for ω0i , i = 1, 2 and we obtain

E(0) ≤ C ′
1(T )

∫ T−ε

ε

∫

ω01

(∣
∣z′1

∣
∣2 + |∇z1|2

)
dx dt

+ C ′
2(T )

∫ T−ε

ε

∫

ω02

(∣
∣z′2

∣
∣2 + |∇z2|2

)
dx dt .

(3.48)

Let us consider ρ ∈ W 1,∞(�), ρ ≥ 0 such that

⎧
⎨

⎩

(i) ρ(x) = 1 in (ω01 ∪ ω02),

(ii) ρ(x) = 0 in � \ (ω1 ∪ ω2).
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Define the function p(x, t) = η(t)ρ(x) in � × (0, T ), where η(t) ∈ C1([0, T ]) is
such that η(0) = η(T ) = 0 and η(t) = 1 in (ε, T − ε). Thus, p satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) p(x, t) = 1 in (ω01 ∪ ω02) × (ε, T − ε),

(ii) p(x, t) = 0 in (� \ (ω1 ∪ ω2)) × (ε, T − ε),

(iii) p(x, 0) = p(x, T ) = 0 in �,

(iv)
|∇ p|2

p
∈ L∞(� × (0, T )).

(3.49)

Multiplying the equation for z1 in (3.1) by pz1 and integrating by parts in Q1, we
obtain

∫ T

0
〈z′′1, pz1〉V ′,V dt +

∫

ω1×(0,T )

A∇z1∇ (pz1) dx dt

−
∫

�T

A∇z1 pz1n1 dσx dt = 0

(3.50)

using (3.49)ii) and the fact that z1 = 0 on �. One more integration by parts of the
first term leads to

−
∫ T

0

∫

ω1

z′1 p′z1 dx dt −
∫ T

0

∫

ω1

|z′1|2 p dx dt

+
∫ T

0

∫

ω1

A∇z1∇ pz1 dx dt

+
∫ T

0

∫

ω1

A∇z1∇z1 p dx dt −
∫

�T

A∇z1 pz1n1 dσx dt = 0.

Arguing as above, we get a similar identity for z2. Now, summing up and using the
imperfect interface condition, we get

∫ T

0

∫

ω1

A∇z1∇z1 p dx dt +
∫ T

0

∫

ω2

A∇z2∇z2 p dx dt

=
∫ T

0

∫

ω1

|z′1|2 p dx dt +
∫ T

0

∫

ω2

|z′2|2 p dx dt

+
∫ T

0

∫

ω1

z′1 p′z1 dx dt +
∫ T

0

∫

ω2

z′2 p′z2 dx dt

−
∫ T

0

∫

ω1

A∇z1∇ pz1 dx dt −
∫ T

0

∫

ω2

A∇z2∇ pz2 dx dt

−
∫

�T

hp(z1 − z2)
2 dσx dt .

(3.51)
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We now estimate the terms on the right hand side of the above expression. To this aim
let us fix i ∈ {1, 2}. We have

∫ T

0

∫

ωi

|z′i |2 p dx dt ≤ ‖p‖L∞(0,T ;�)

∫ T

0

∫

ωi

|z′i |2 dx dt (3.52)

and by Young inequality

∫ T

0

∫

ωi

z′i p′zi dx dt ≤ 1

2
‖p′‖L∞(0,T ;�)

(∫ T

0

∫

ωi

|zi |2 dx dt

+
∫ T

0

∫

ωi

|z′i |2 dx dt

)

. (3.53)

To estimate the other two terms, we apply again Young inequality and hypothesis
(2.7)ii) to get

∣
∣
∣
∣

∫ T

0

∫

ωi

A∇zi∇ pzi dx dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ T

0

∫

ωi

β|∇zi ||∇ p||zi | dx dt

∣
∣
∣
∣

≤ β2γ

∫ T

0

∫

ωi

p|∇zi |2 dx dt

+ 1

4γ

∫ T

0

∫

ωi

|∇ p|2
p

|zi |2 dx dt,

(3.54)

for any γ > 0. By putting the above estimates into (3.51) and taking into account
(3.49), we obtain

α

(∫ T

0

∫

ω1

|∇z1|2 p dx dt +
∫ T

0

∫

ω2

|∇z2|2 p dx dt

)

≤ C

(∫ T

0

∫

ω1

|z′1|2 dx dt +
∫ T

0

∫

ω2

|z′2|2 dx dt

)

+ β2γ

(∫ T

0

∫

ω1

|∇z1|2 p dx dt +
∫ T

0

∫

ω2

|∇z2|2 p dx dt

)

,

(3.55)

for some constant C > 0 and for any γ > 0. Thus, choosing γ <
α

β2 and by (3.48)

and (3.49), we get the desired result. ��
Corollary 3.10 (equivalence of norms) Let us suppose that �2 is star-shaped with
respect to a point x0 ∈ �2 satisfying condition (3.41). Assume that ω1 and ω2 are
neighbourhoods of ∂�(x0) and � respectively and let z = (z1, z2) the solution of
problem (3.1)–(3.2). Then, there exists T0 > 0 such that

E(0) ≤ C(T )

(∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |z1|2

)
dx dt +

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |z2|2

)
dx dt

)

≤ C3(T )E(0),

(3.56)
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for T large enough so that (3.47) is satisfied.

Proof The proof is an immediate consequence of (3.4), (3.16), (3.17) and (3.46). ��
The above lemma essentially shows the equivalence of the standard norm in H�

with the norm

(∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |z1|2

)
dx dt +

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |z2|2

)
dx dt

)1/2

.

It also proves the following uniqueness result: if zi = 0 in ωi × (0, T ), then zi = 0 in
�i × (0, T ), for i = 1, 2.

These are themain points to develop theHUMmethod described in the next section.

4 HUM and the Internal Exact Controllability Result

In this section, by using the Hilbert Uniqueness Method introduced by Lions (see [42,
43]), we prove the internal exact controllability of system (2.2) stated in the following
theorem.

Theorem 4.1 Assume that (2.7) and (2.9) hold. Suppose that �2 is star-shaped
with respect to a point x0 ∈ �2 satisfying R(x0) < α/(nM). Let ω1 and ω2 be
neighbourhoods of ∂�(x0) and �, respectively. Then, for any given

(
U 0,U 1

)
in

(
L2 (�1) × L2 (�2)

) × (H�)′, there exist a control ζ ∈ W ′ and a time T0 > 0 such
that the corresponding solution of problem (2.2) satisfies

u(T ) = u′(T ) = 0, (4.1)

for T large enough so that
T − T0

T
>

nR(x0)M

α
. (4.2)

Proof We point out that the exact controllability is achieved in the space
(
L2 (�1) ×

L2 (�2)
)×(H�)′ with control inW ′. In fact, we represent the control ζ in terms of the

solution z of problem (3.1)–(3.2) with appropriate chosen initial data. The method is
constructive, indeed one could develop it as a numerical algorithm.We briefly describe
the HUM which essentially relies on the observability estimate, given in Lemma 3.9.

Given any
(
z0, z1

) ∈ H� × (
L2 (�1) × L2 (�2)

)
, let z the solution of problem

(3.1)–(3.2). Then consider the following adjoint problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lθi ≡ θ ′′
i − div(A(x)∇θi ) = (−z′′i + zi )χωi in Qi , for i = 1, 2

A(x)∇θ1n1 = −A(x)∇θ2n2 on �T ,

A(x)∇θ1n1 = −h(x)(θ1 − θ2) on �T ,

θ1 = 0 on �,

θi (T ) = θ ′
i (T ) = 0 in �i for i = 1, 2,

(4.3)
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where the solution θ = (θ1, θ2) is intended in the sense of transposition. Here−z′′i χωi ,
for i = 1, 2 is to be interpreted in a duality sense, namely

〈−z′′i χωi , vi 〉W ′,W =
∫ T

0

∫

ωi

z′iv′
i dx dt, (4.4)

for all v = (v1, v2) ∈ W .
Now, if (U 0,U 1) are the initial conditions of problem (2.2) with ζi = −z′′i + zi ,

then, by uniqueness, the null controllability problem is solved if θ satisfies

θi (0) = U 0
i , θ ′

i (0) = U 1
i (4.5)

for i = 1, 2. Thus, the key point is to choose the initial data
(
z0, z1

) ∈ H� × L2 (�))

so that the above initial conditions for θ are satisfied. This motivates us to define the
linear operator

� : H� ×
(
L2 (�1) × L2 (�2)

)
→ (H�)′ ×

(
L2 (�1) × L2 (�2)

)
(4.6)

as follows
�

(
z0, z1

)
= (

θ ′(0),−θ(0)
)
. (4.7)

Hence the null controllability problem reduces to prove that � is onto, since then one
can solve

�
(
z0, z1

)
= (U 1,−U 0)

to obtain suitable initial values
(
z0, z1

)
leading to (4.5). In fact, we prove that � is an

isomorphism and then the solution of the above equation is unique. In this direction,
we compute

〈
�

(
z0, z1

)
,
(
z0, z1

)〉 = 〈(
θ ′(0),−θ(0)

)
,
(
z0, z1

)〉

=
〈
θ ′
1(0), z

0
1

〉

V ′,V
−

∫

�1

z11θ1(0)dx

+
〈
θ ′
2(0), z

0
2

〉

(H1(�2))′,H1(�2)
−

∫

�2

z22θ2(0)dx,

(4.8)

for every
(
z0, z1

) ∈ H� × (
L2 (�1) × L2 (�2)

)
.
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By definition of transposition solution, it is easy to see that the right hand side of
the above equation satisfies

〈
θ ′
1(0), z

0
1

〉

V ′,V
−

∫

�1

z11θ1(0)dx +
〈
θ ′
2(0), z

0
2

〉

(H1(�2))′,H1(�2)
−

∫

�2

z22θ2(0)dx

=
∫ T

0

∫

ω1

(∣
∣z′1

∣
∣2 + |z1|2

)
dx dt +

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |z2|2

)
dx dt .

(4.9)
Thus, we have

〈
�

(
z0, z1

)
,
(
z0, z1

)〉
=

∫

ω1×(0,T )

(∣
∣z′1

∣
∣2 + |z1|2

)
dx dt+

∫ T

0

∫

ω2

(∣
∣z′2

∣
∣2 + |z2|2

)
dx dt .

(4.10)
In view of the equivalence of the norms stated in Corollary 3.10, the above identity
shows that � is an isomorphism between H� × (

L2 (�1) × L2 (�2)
)
and (H�)′ ×

(
L2 (�1) × L2 (�2)

)
, for T large enough so that (4.2) is satisfied. Hence Theorem

4.1 holds true with exact control

ζχω = (ζ1χω1 , ζ2χω2) = ((−z′′1 + z1)χω1 , (−z′′2 + z2)χω2),

which is an element of W ′. ��
We point out that, unlike classical cases, the lower bound for the control time T
depends not only on the geometry of our domain and on the matrix of coefficients of
our problem but also on the coefficient of proportionality of the jump of the solution
of problem (2.2) with respect to the conormal derivatives via the constant h0.
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